

WATER QUALITY ASSESSMENT REPORT

TASK 3 – ZAI WATER TREATMENT PLANT PROJECT

This publication was produced for review by the United States Agency for International Development. It was prepared by CDM Smith.

USAID Jordan Water Infrastructure

Prepared by CDM International Inc. for United States Agency for International Development under Global Architect - Engineer Services II IDIQ USAID Contract No. AID-OAA-I-15-00047 Order: 72027818F00002

The Hashemite Kingdom of Jordan Ministry of Water and Irrigation Water Authority of Jordan (WAJ)

Date: 31 October 2018

Project: USAID Jordan Water Infrastructure

Contract: Global Architect - Engineer Services II IDIQ USAID Contract No. AID-OAA-I-15-00047 Order: 72027818F00002

Water Quality Assessment Report Task 3 – Zai Water Treatment Plant Project

Prepared by:	Mark White	Date:	October 2018
Reviewed by:	Al LeBlanc	Date:	October 2018
Approved by: Rick Minkwitz		Date:	31 October 2018
USAID Approval		Date	5 November 2018

Disclaimer

This study/publication/other information product is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents of this report do not necessarily reflect the views of USAID or the United States Government.

TABLE OF CONTENTS

LIST OF FIGURES III
LIST OF TABLES
LIST OF ABBREVIATIONSV
LIST OF UNITS
EXECUTIVE SUMMARY I
INTRODUCTION
RAW WATER QUALITY I
TREATED WATER QUALITY II
SECTION 1 - INTRODUCTION
• 1.1 SUMMARY OF THE USAID JORDAN WATER INFRASTRUCTURE
1.2 BACKGROUND TO TASK 3 – EXPANSION OF THE ZAI WATER TREATMENT PLANT PROJECT
 1.2.1 Task 3 – Scope of Work
1.2.2 Water Quality Assessment Activities
• 1.3 ACKNOWLEDGEMENTS
1.4 REPORT ORGANIZATION
SECTION 2 - JORDANIAN WATER QUALITY STANDARDS
• 2.1 INTRODUCTION
2.2 SOURCE WATER QUALITY CHARACTERIZATION
 2.2 SOURCE WATER QUALITY CHARACTERIZATION
• 2.3 POTABLE WATER STANDARDS
 2.3 POTABLE WATER STANDARDS

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

ii

SECTION 4 - TREATED WATER QUALITY
• 4.1 INTRODUCTION
• 4.2 TREATED WATER QUALITY
• 4.3 WATER TREATMENT PLANT PERFORMANCE
• 4.3.1 Turbidity
• 4.3.2 Nematodes
• 4.3.3 Chlorine
• 4.3.4 Chlorite
• 4.3.5 Total Organic Carbon
4.3.6 Trihalomethanes
4.3.7 Applicable Water Treatment Processes
 4.3.8 Comparison to Historical Zai WTP Water Quality
APPENDIX A - WADI ARAB WATER SYSTEM II – WATER QUALITY ASSESSMENT MEMORANDUM (2014)
• A.1 DEIR ALLA RAW WATER QUALITY
• A.2 ZAI EFFLUENT WATER QUALITY

LIST OF FIGURES

Figure 3-1	Zai WTP Raw Water Turbidity (2015 - 2017)	.13
Figure 3-2	Zai WTP Raw Water Turbidity Percentile (2015 - 2017)	.13
Figure 3-3	Zai WTP Raw Water TOC (2017)	.14
Figure 3-4	Zai WTP Raw Water TOC Percentile (2017)	.15
Figure 3-5	Zai WTP Raw Water Fecal Coliform Levels (2017)	.16
Figure 3-6	Zai WTP Raw Water Fecal Coliform Percentile (2017)	.16
Figure 4-1	Zai WTP Average Daily Effluent Water Turbidity (2017)	.22
Figure 4-2	Zai WTP Average Daily Effluent Water Turbidity Percentile (2017)	.23
Figure 4-3	Zai WTP Effluent Water TOC (2017)	.24
Figure 4-4	Zai WTP TOC Removal Percentile (2017)	.25
Figure 4-5	Zai WTP Effluent Water Trihalomethane Levels (2017)	.26

LIST OF TABLES

Table 2-1	MoH Water Classification and Requirements for Source Waters5
Table 2-2	JWQS Standards for Physical Characteristics of Drinking Water
Table 2-3	JWQS Standards for Biological Characteristics of Drinking Water
Table 2-4	JWQS Standards for Inorganic Chemical Substances in Drinking Water6
Table 2-5	JWQS Standards for Organic Pollutants in Drinking Water7
Table 2-6	JWQS Standards for Pesticides in Drinking Water7
Table 2-7 Water ¹	JWQS Standards for Disinfectants and Disinfection Byproducts in Drinking
Table 2-8	JWQS Standards for Radionuclides in Drinking Water8
Table 2-9	JWQS Standards for Aesthetic Properties of Drinking Water8
Table 3-1	Recent Water Quality for the KAC Source Water to the Zai WTP11
Table 3-2	Impact of KAC Extreme Water Quality Events on the Zai Water System17
Table 4-1	Recent Treated Water Quality of the Zai WTP Effluent19
Table 4-2	Chlorite Concentrations in the Zai Water System (2017)24
Table A-1	KAC Raw Water Statistics at Deir Alla from May 2011 through April 20141
Table A-2	Zai WTP Finished Water Quality Statistics from May 2011 through April 2014 1

LIST OF ABBREVIATIONS

AJ	Arabtech Jardaneh
AWC	Aqaba Water Company
BEO	Bureau Environmental Officer
BoDR	Basis of Design Report
вот	Build, Operate and Transfer
CDM Smith	CDM International Inc.
COR	Contract Officer Representative
СС	Consolidated Consultants for Engineering and
	Environment
CMS	Construction Management Services
DEC	Development Experience Clearinghouse
DDL	USAID's Development Data Library
DLS	Department of Land Survey
DOS	Department of Statistics
EA or EIA	Environmental Assessment or Environmental Impact
	Assessment
FARA	Fixed Amount Reimbursable Agreement
GIS	Geographical Information System
GOJ	Government of Jordan
GTD	Government Tenders Department
IEE	Initial Environmental Examination
IR	Intermediate Result
JD or JOD	Jordanian Dinars
JISM	Jordanian Institute for Standards and Metrology
JDWS	Jordan Drinking Water Standards
JWQS	Jordanian Water Quality Standards
КАС	King Abdullah Canal
КаМР	USAID/Jordan Knowledge Management Portal
МСМ	Million Cubic Meters
MEL	Monitoring Evaluation and Learning
ΜΕΟ	Mission Environmental Officer
MF	Microfiltration
MoE	Ministry of Environment
M&E	Monitoring & Evaluation
МоН	Ministry of Health
MPWH	Ministry of Public Works and Housing
MWI	Ministry of Water and Irrigation
N/A	Not Applicable
NF	Nanofiltration
NRW	Non-Revenue Water
0&M	Operation and Maintenance
PSP	Private Sector Participation

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

LIST OF ABBREVIATIONS

PMU	Project Management Unit	
QA/QC	Quality Assurance and Quality Control	
<i>щ</i> ,	Request for Task Order Proposal	
RFO	Request for Qualification (Prequalification Document)	
RFTOP	Request for Task Order Proposal	
RO	Reverse Osmosis	
RSDS	Red Sea Dead Sea	
SCADA	Supervisory Control Data Acquisition	
SWRO	Salt Water Reverse Osmosis	
тос	Total Organic Carbon	
TRG	Training Resources Group	
UF	Ultrafiltration	
USAID	United States Agency for International Development	
USD or US\$	United States Dollars	
UV	Ultraviolet Light	
W&C	White and Case	
WAJ	Water Authority of Jordan	
WHO	World Health Organization	
WTP	Water Treatment Plant	
WWTP	Wastewater Treatment Plant	
YWC	Yarmouk Water Company	

LIST OF UNITS

Bq	becquerel
CFU	colony forming unit
ст	centimeter
CU	color units
°C	degrees Celsius
d, D	day
Dunum	1,000 square meters
ha	hectare (10,000 square meters)
h, hr	hour
JD	Jordanian Dinar
kg	kilogram
km	kilometer
kPa	kilo Pascal
kV	kilovolt
kVA	kilovolt ampere
L, I	liter
lpcd	liters per capita per day
L/s, I/s	liter per second
т	meter
m²	square meter
m ³	cubic meter
m³/d	cubic meter per day
m³/h	cubic meter per hour
m³/s	cubic meter per second
m/s	meter per second
МСМ	million cubic meters
MCM/y	million cubic meters per year
mg	milligram
min	minute
mL/d	megaliters per day
mm	millimeter
NTU	nephelometric turbidity unit
Ра	Pascal
РРВ	parts per billion
PPM	parts per million
S	second
тси	true color unit
TON	threshold odor number
Y, y	year
	-

EXECUTIVE SUMMARY

INTRODUCTION

CDM International Inc. (CDM Smith) was retained by the United States Agency for International Development (USAID) to undertake the USAID Jordan Water Infrastructure (the Project) for the purpose of improving the utilization of limited water resources in Jordan and bring about urgently needed enhancements to the water and wastewater systems.

The major components of the Project are summarized as follows:

- Task 1 Preparation of Detailed Design and Providing Services and Support for the Red Sea Dead Sea (RSDS) Conveyance Project – Phase II (Optional)
- Task 2 Construction Supervision Shedeyyeh Hasa Water Project Phase I
- Task 3 Detailed Engineering Design and Tender Documents for Expansion of Zai Water Treatment Plant Project
- Task 4 Feasibility Study, Design, and Tender Documents for Expansion of Madaba Wastewater Treatment Plant
- Task 5 Feasibility Study, Design, and Tender Documents for Expansion of Ramtha Wastewater Treatment Plant
- Task 6 Water and Wastewater Project for Deir Alla
- Task 7 Water and Wastewater Project for Bani Kenanah/Irbid Governorate
- Task 8 Technical Assistance to Water Utilities (Optional)
- Task 9 Assessment of Water/Wastewater Systems, Feasibility Studies, Designs, Tendering Support and Construction Management Services (Optional)

The purpose of this Water Quality Assessment Report is to provide an analysis of the water quality data for the existing Zai Water Treatment Plant (WTP) system, including raw water quality, treated finished water quality, and unit treatment process performance to provide recommendations on treatment process modifications, if required, to improve the ability of the Zai WTP to meet the Government of Jordan (GOJ) standards for drinking water and other key international standards. Results from this analysis will assist with the identification of potential options to upgrade, rehabilitate and provide reliability to the system for the future

RAW WATER QUALITY

The raw source water for the Zai water system is collected from the King Abdullah Canal (KAC) at an intake facility located at Deir Alla in the Jordan Valley. The Ministry of Health (MoH) has classified the KAC as Group 3 source water due to elevated levels of fecal coliform that suggests potential wastewater contamination. A review of KAC water quality data from 2015 to 2017 identified elevated levels of turbidity, total organic carbon (TOC), and fecal coliforms. The water treatment processes currently in use at the Zai WTP meet the requirements of the MoH for systems treating Group 3 source waters and appear capable of producing a finished water that meets current Jordanian Water Quality Standards (JWQS).

Periodically, the KAC experiences events of extreme water quality that are difficult to treat.

To address these events, Miyahuna has developed a series of standard operating procedures to respond to extreme KAC water quality events that include reducing WTP flow rates and/or stopping WTP operations, adjusting chemical feed within the intake pump station and the Zai WTP, and addition of ferric chloride with the KAC upstream of the Deir Alla intake.

A comparison of 2015 – 2017 KAC water quality to historical water quality data from a 2014 report, shows generally higher levels of turbidity and fecal coliforms in the more recent data, suggesting a potential increase in stormwater runoff that may be due to increased development activities within the watershed area.

TREATED WATER QUALITY

Results from periodic sampling of the treated finished water effluent from the Zai WTP for the three-year period from 2015 to 2017 demonstrate compliance with most of the regulated parameters of the JWQS standards for potable water. However, some of the results from the following parameters occasionally exceed the allowable JWQS standard or other industry guidance:

- Turbidity (complies with Jordan Drinking Water Standards (JDWS), but exceeds World Health Organization recommended levels)
- Nematodes
- Chlorine
- Chlorite

A detailed filter evaluation is recommended to identify upgrades to the filters and/or process control systems to lower the finished water turbidity and nematode levels. Upgrades to process controls should also be identified to improve compliance with chlorine and chlorite standards.

A comparison of 2015 – 2017 Zai WTP effluent water quality to historical water quality data from a 2014 report, shows generally higher levels of turbidity in the more recent data, indicating that the performance of the Zai filters has deteriorated in recent years.

SECTION 1 - INTRODUCTION

1.1 SUMMARY OF THE USAID JORDAN WATER INFRASTRUCTURE

CDM International Inc. (CDM Smith) was retained by the United States Agency for International Development (USAID) to undertake the USAID Jordan Water Infrastructure (the Project) for the purpose of improving the utilization of limited water resources in Jordan and bring about urgently needed enhancements to the water and wastewater systems.

Water and wastewater infrastructure improvements are needed throughout Jordan to alleviate water supply shortages, public health issues, and impacts on industry and the economy. The Project will serve as an umbrella contract for USAID/Jordan's water, wastewater, and environment sectors and will cover multiple tasks specifically designed to achieve the paired objectives of delivering needed water infrastructure and capacity building to the Water Authority of Jordan (WAJ) and water companies throughout Jordan.

The Project covers engineering infrastructure improvements identified by USAID in cooperation with the Ministry of Water and Irrigation (MWI), the Water Authority of Jordan (WAJ), public sector water companies such as Miyahuna, Yarmouk, and the Aqaba Water Company, the various municipalities, and the Ministry of Environment (MoE). The program provides engineering services to carryout assessments, studies and design and construction management for water, wastewater and environmental projects.

The major components of the Project are summarized as follows:

- Task 1 Preparation of Detailed Design and Providing Services and Support for the Red Sea Dead Sea (RSDS) Conveyance Project – Phase II (Optional)
- Task 2 Construction Supervision Shedeyyeh Hasa Water Project Phase I
- Task 3 Detailed Engineering Design and Tender Documents for Expansion of Zai Water Treatment Plant Project
- Task 4 Feasibility Study, Design, and Tender Documents for Expansion of Madaba Wastewater Treatment Plant
- Task 5 Feasibility Study, Design, and Tender Documents for Expansion of Ramtha Wastewater Treatment Plant
- Task 6 Water and Wastewater Project for Deir Alla
- Task 7 Water and Wastewater Project for Bani Kenanah/Irbid Governorate
- Task 8 Technical Assistance to Water Utilities (Optional)
- Task 9 Assessment of Water/Wastewater Systems, Feasibility Studies, Designs, Tendering Support and Construction Management Services (Optional)

1.2 BACKGROUND TO TASK 3 – EXPANSION OF THE ZAI WATER TREATMENT PLANT PROJECT

The purpose of this Water Quality Assessment Report is to provide an analysis of the water quality data for the existing Zai Water Treatment Plant (WTP) system, including raw water quality, treated finished water quality, and unit treatment process performance to provide recommendations on treatment process modifications, if required, to improve the ability of the Zai WTP to meet the GOJ standards for drinking water and other key international standards. Results from this analysis are proposed to be incorporated into the design of

improvements to the Zai WTP that is being conducted under the USAID Jordan Water Infrastructure Project Task 3.

As a result of a coordination meeting on 17 September 2018 with MWI/WAJ and USAID, MWI/WAJ advised that the two additional anticipated water quantities planned to be available in the KAC have not fully materialized to the point where additional water quantities would be available for expanding of the Zai water treatment system. MWI/WAJ advised that additional available water quantities will be used by the Wadi Arab II Project. Therefore, as agreed upon, there are currently no plans under Task 3 to expand the Zai water treatment system.

The plan under Task 3 is to complete the Zai Water Treatment System evaluation and water quality assessment with the intent to identify potential options to upgrade, rehabilitate and provide reliability to the system for the future.

1.2.1 Task 3 – Scope of Work

In addition to this Water quality assessment report, the Task 3 – scope of work will include the following deliverables:

- Existing Conditions and water quantity assessment report
- Options evaluation report to identify those options for potential implementation to upgrade, rehabilitate and provide reliability to the system for the future
- Environmental impact assessment based on the options report
- Based on agreement by USAID and MWI/WAJ to the preferred alternative, preparation
 of the design report and tender document will begin, geotechnical investigations will
 commence and confidential cost estimates will be developed.

1.2.2 Water Quality Assessment Activities

The activities carried out as part of the water quality assessment report are described as follows:

- Available water quality data from the KAC has been collected along with additional reports on water quality.
- Available data from the water treatment plant regarding both quantitative and qualitative influent and effluent were collected.
- A site visit by water treatment process staff to gather firsthand information on the facilities, to meet with Miyahuna's management and operation personnel and to gain insight into existing conditions and facility operations.

1.3 ACKNOWLEDGEMENTS

During preparation of this report, CDM received support and assistance from many individuals within MWI/WAJ and Miyahuna. CDM would wish to recognize the Secretary General of WAJ, the project coordinator, Bilal Al Sharif and Miyahuna coordinator, Haitham Kilani, the Zai WTP Manager, the Zai WTP Quality Manager, Majeda Ali Al Zoubi, and their staff for their support and assistance during the preparation of this study.

1.4 REPORT ORGANIZATION

The remainder of this report is organized as follows.

- Section 2 Jordanian Water Quality Standards
- Section 3 Raw Water Quality
- Section 4 Treated Water Quality
- Appendix A Wadi Arab Water System II Water Quality Assessment Memorandum (2014)

2.1 INTRODUCTION

The governing standards for potable water quality within Jordan are the Jordan Water Quality Standards (JWQS), set forth by the Jordanian Institute for Standards and Metrology (JISM) published in 2008. These standards apply to water used for drinking, household, food industries, and ice making purposes. In addition, the Ministry of Health (MoH) defines minimum potable water treatment requirements for source waters depending upon their quality. The MoH defaults to World Health Organization (WHO) potable water treatment guidelines when the Jordanian standards are silent on a particular water quality item or treatment approach.

CDM met with Dr. Mohamad Al Abhadi of the MoH on 12 August 2018 to discuss the proposed rehabilitation of the Zai WTP, including any concerns that the MoH might have regarding the current operation of the Zai WTP and any pending regulation changes. Dr. Al Abhadi stated that since the ultraviolet light (UV) disinfection system was installed at the Zai WTP, the MoH is satisfied with the Zai WTP operation. The MoH confirmed that no changes were pending for the current regulations in print.

2.2 SOURCE WATER QUALITY CHARACTERIZATION

The MoH defines minimum potable treatment requirements for source waters of various quality. Source water resource areas are classified into four groups depending on the concentration of E. coli, turbidity, and pH. These classifications are summarized in Table 2-1.

The MoH classifications are based primarily on E. coli in raw water. E. coli is an indicator of wastewater contamination in which case, other protozoa such as *Giardia* and *Cryptosporidium* may also be present and pose a more significant health risk. Simple disinfection by chlorination may not be effective for these protozoa and thus filtration and UV disinfection may be appropriate as required by MoH.

Water	Criteria	Treatment Required	Operations
Protected	Groundwater		•
Group 0	 Freeness of E. coli Turbidity <5 nephelometric turbidity unit (NTU) pH between 6.5 and 8.5 	 None, chlorine disinfection and residual only 	 Shutdown if raw water E. coli exceeds 50/100 megaliters (mL) Shutdown if 20% of raw water samples exceed 20/100 mL Shutdown If raw water turbidity > 5 NTU for 3 days of samples Shutdown if raw water pH outside of range for 3 days of samples
Unprotec	ted Groundwater or Surfa	ce Water	
Group 1	 E. coli < 20/100 mL for > 20% of raw water samples No single raw water sample E. coli > 50/100 mL Turbidity < 5 NTU pH between 6.5 and 8.5 	 None, chlorine disinfection and residual only 	 Shutdown if raw water E. coli exceeds 50/100 mL Shutdown if 20% of raw water samples exceed 20/100 mL Shutdown If raw water turbidity > 5 NTU for 3 days of samples Shutdown if raw water pH outside of range for 3 days of samples
Group 2	 E. coli > 20/100 mL for > 20% of raw water samples pH and Turbidity as required by treatment processes 	 4-log (99.99%) Removal of viruses 3-log (99.9%) removal of <i>Giardia</i> and <i>Cryptosporidium</i> Must use rapid filtration, MF, UF, NF, RO or slow sand filtration with coagulation, mixing and sedimentation 	 Shutdown if raw water E. coli exceeds 5,000/100 mL Shutdown if more than 20% of raw water samples exceed 2,000/100 mL
Group 3	 E. coli > 2,000/100 mL for > 20% of raw water samples pH and turbidity as required by treatment processes 	 5-log (99.999%) Removal of viruses 4-log (99.99%) removal of <i>Giardia</i> and <i>Cryptosporidium</i> Must use rapid filtration, microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO) or slow sand filtration with coagulation, mixing and sedimentation Must use UV disinfection 	 Shutdown if raw water E. coli exceeds 20,000/100 mL

Table 2-1 MoH Water Classification and Requirements for Source Waters

2.3 POTABLE WATER STANDARDS

2.3.1 Physical Characteristics of Drinking Water

Table 2-2 provides a list of Jordanian potable drinking water standards governing the physical characteristics of the treated water.

Table 2-2JWQS Standards for Physical Characteristics of Drinking Water			
Property	Allowable Maximum Level		
Color	15 True Color Units (TCU)		
Odor	Acceptable		
Taste	Agreeable		
Turbidity	5 NTU		
Temperature	25 degrees C		

2.3.2 Biological Characteristics of Drinking Water

Table 2-3 provides a list of Jordanian potable drinking water standards governing the biological characteristics of the treated water.

JWQS Standards for Biological Characteristics of Drinking Water Table 2-3

Property	Allowable Maximum Level
Fecal Coliform	(See Note 1 below)
Total Coliform	(See Note 1 below)
Nematode	1 count/L (See Note 2 below)

Notes:

- 1. A 100 mL representative water sample must be free of:
 - a. fecal coliform when using the filtration method or any other internationally approved method, and the number of the fecal coliform must be less than 1.1 when using the Most Probable Number (MPN) method.
 - b. Heat-resistant fecal coliform rods or E. coli when using the filtration method or any other internationally approved method, and the number of the fecal coliform rods must be less than 1.1 when using the MPN method.
- 2. For parasites, drinking water must be free of all stages of the pathogenic parasites and infectious intestinal worms. For free living organisms (nematodes), the number of any stage of the free-living organisms (nematodes) should not exceed one living organism per liter.

2.3.3 Inorganic Chemical Substances

Table 2-4 provides a list of Jordanian potable drinking water standards governing the presence of inorganic chemical substances in treated water.

JWQS Standards for Inorganic Chemical Substances in Drinking Water Table 2-4

Chemical Substance	Symbol	Allowable Maximum Concentration
Antimony	Sb	0.005 ppm
Arsenic	As	0.01 ppm
Barium	Ва	1.0 ppm
Boron	В	1.0 ppm
Cadmium	Cd	0.003 ppm

Chemical Substance	Symbol	Allowable Maximum Concentration
Chromium	Cr	0.05 ppm
Copper	Cu	1.0 ppm
Cyanide	CN	0.07 ppm
Fluoride	F	1.5 ppm
Lead	Pb	0.01 ppm
Manganese	Mn	0.1 ppm
Mercury	Hg	0.001 ppm
Molybdenum	Мо	0.07 ppm
Nickel	Ni	0.07 ppm
Nitrate	NO ₃	50 ppm (70 ppm ¹)
Nitrite	NO ₂	2.0 ppm
Selenium	Se	0.01 ppm
Silver	Ag	0.1 ppm

Notes:

1. Higher level allowed if no other higher quality sources available.

2.3.4 Organic Pollutants and Pesticides

Table 2-5 and Table 2-6 provide lists of Jordanian potable drinking water standards governing the presence of select organic pollutants and pesticides in treated water.

Table 2-5JWQS Standards for Organic Pollutants in Drinking Water

Chemical Substance	Allowable Maximum Concentration	
Benzene	10 parts per billion (ppb)	
Tetrachloroethylene	40 ppb	
(perchlorethylene [PCE])		
Trichloroethylene (TCE)	20 ppb	
Ethylbenzene	300 ppb	
Total Xylene	700 ppb	
Toluene	300 ppb	

Table 2-6JWQS Standards for Pesticides in Drinking Water

Chemical Substance	Allowable Maximum Concentration ¹	
Endrin	2.0 ppb	
Lindane	2.0 ppb	
Heptachlor epoxide and Heptachlor	0.03 ppb	
Aldrin	0.03 ppb	
Dieldrin	0.03 ppb	
2,4-D	90 ppb	
2-4-5T	9.0 ppb	
DDT	2.0 ppb	

Notes:

1. Combined total of all listed organic pesticides must not exceed 100 ppb.

2.3.5 Disinfectants and Disinfection Byproducts

Table 2-7 provides a list of Jordanian potable drinking water standards governing the presence of disinfectants and disinfection byproducts in treated water.

Table 2-7	JWQS Standards for Disinfectants and Disinfection Byproducts in Drinking
Water	

Chemical Substance	Allowable Maximum Concentration	
Free Chlorine	When chlorine is used for disinfection, the water in the distribution network must include a free surplus of chlorine which must be no less than 0.2 mg/L at the end of the network. Additionally, it must not exceed 1.5 mg/L after a lapse of no less than 15 minutes from the addition of chlorine to the water. In any case, 15 minutes must elapse after the disinfection operation before the disinfected water reaches the first customer.	
Total Trihalomethanes	0.15 ppm ^{1,2}	
Chlorite	0.7 ppm	
Chlorine Dioxide	0.4 ppm	

Notes:

- 1. Total trihalomethanes are measured at the finished water and in the distribution system.
- 2. Total trihalomethanes for distribution system are averaged for the month and then compared to regulation number of 0.15 parts per million (ppm).

2.3.6 Radionuclides

Table 2-8 provides a list of Jordanian potable drinking water standards governing the presence of radionuclides in treated water.

Table 2-8JWQS Standards for Radionuclides in Drinking Water

Substance	Allowable Maximum
	Concentration
Alpha Radionuclides excluding Radon	0.5 Becquerel/L
Beta Radionuclides excluding Tritium and Carbon 14	1 Becquerel/L

Notes:

1. If Alpha and Beta Radionuclides exceed the reference level for radioactive properties, an investigation of the type and source of the radionuclides should be conducted as well as an assessment of the health effects and to measure the level of exposure to radioactive materials so that it does not exceed 0.1 milliseverts/year for Beta radionuclides for each element.

2.3.7 Aesthetic Water Properties

Table 2-9 provides a list of Jordanian potable drinking water standards governing the aesthetic properties of the treated water along with requirements for sampling / monitoring frequencies.

Table 2-9JWQS Standards for Aesthetic Properties of Drinking Water

Property	Maximum Level
Aluminum (Al)	0.1 ppm
Ammonium (NH4)	0.2 ppm
Chemical Detergents (MBAS)	0.2 ppm
Chloride (Cl)	500 ppm
Iron (Fe)	1.0 ppm

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

Maximum Level
6.5 - 8.5
200 ppm (300 ppm ¹)
500 ppm
1000 ppm (1300 ppm ¹)
500 ppm as CaCO ₃
4.0 ppm

Notes:

1. Higher level allowed if no other higher quality sources available.

3.1 INTRODUCTION

The raw source water for the Zai water system is collected from the King Abdullah Canal (KAC) at an intake facility located at Deir Alla in the Jordan Valley. Once collected, the raw source water is screened, treated with chlorine dioxide and/or potassium permanganate, and then conveyed through a series of pump stations, regulating reservoirs, and transmission mains to the Zai Water Treatment Plant.

3.2 RAW WATER QUALITY

The raw source water from the KAC is sampled regularly and analyzed for various water quality parameters. Results from this periodic sampling for the three-year period from 2015 to 2017 was provided by Miyahuna. Table 3-1 provides a summary of this recent historical water quality of the KAC source water. Most of the water quality parameters are within ranges that can be readily treated by conventional water treatment plant methods. However, periodic episodes of poor water quality result in elevated levels of turbidity and total organic carbon (TOC) that can be challenging to address.

3.2.1 Turbidity

Under most conditions, the KAC source water collected at the Deir Alla intake for the Zai water system can be characterized as a high-turbidity source. Figures 3-1 and 3-2 illustrate the reported intake turbidity for the period between 2015 to 2017. Throughout this period, the average turbidity was 74 NTU, and the 95th percentile turbidity was 150 NTU. During an extreme water quality events, the turbidity rose as high as 3000 NTU. These raw water turbidity levels negatively impact the coagulation and settling processes and also lead to increased requirements for sludge processing.

10

Property	Units	Average	Minimum	Maximum			
Physical Characteristics							
Color ¹	CU	CU <15 <		39			
Odor ¹	TON	12	8	12			
Turbidity ²	NTU	74	10	3000			
Temperature ²	Deg. C	23.7	11.5	33.0			
Biological Characteristics							
Algae ³	Units / mL	536	60	2920			
Fecal Coliform ³	MPN / 100mL	2348	45	9200			
Nematodes - Live ³	No. / L	0.03	None Detected	2			
Nematodes - Dead ³	No. / L	0.01	None Detected	1			
	Inorganic Chemi	cal Substances					
Antimony ⁴	PPB	< 3	< 3	< 3			
Arsenic ⁴	PPB	< 3	< 3	< 3			
Barium⁴	PPM	0.54	0.25	0.94			
Boron ⁴	PPM	0.21	0.16	0.27			
Cadmium ^₄	PPB	< 0.2	< 0.2	< 0.25			
Chromium⁴	PPB	3.1	< 2	4.1			
Cobalt ⁴	PPB	< 0.2	< 0.2	< 0.2			
Copper ⁵	PPM	< 0.15	< 0.15	< 0.15			
Cyanide ⁴	PPM	< 0.01	< 0.01	< 0.01			
Fluoride ⁶	PPM	0.47	< 0.2	0.81			
Lead ⁴	PPB	< 2	< 2	< 2			
Manganese⁵	PPM	< 0.05	< 0.05	< 0.05			
Mercury ⁴	PPM	0.52	< 0.15	1.25			
Molybdenum ⁴	PPB	4.3	< 2	9.0			
Nickel ⁴	PPB	2.8	< 2	3.6			
Nitrate ⁷	PPM	4.9	1.0	14.0			
Nitrite ⁶	PPM	0.12	< 0.1	0.24			
Potassium ^₄	PPM	6.4	3.7	7.8			
Selenium ⁴	PPB	< 5	< 5	< 5			
Silver ⁴	PPB	< 2	< 1	< 2			
	Organic Pollutants	and Pesticide	S				
Benzene ⁴	PPB	< 8	< 8	< 10			
PCE ⁴	PPB	< 18	< 11	< 22			
TCE ⁴	PPB	< 18	< 13	< 38			
Ethylbenzene ⁴	PPB	< 18	< 8	< 19			
Total Xylene ⁴	PPB	< 22	< 8	< 38			
Toluene ⁴	PPB	<18	< 8	< 19			
Endrin ⁸	PPB	< 0.1	< 0.1	< 0.1			
Lindane ⁸	PPB	< 0.1	< 0.1	< 0.1			
Heptachlor ⁸	PPB	< 0.03	< 0.03	< 0.03			
Aldrin ⁸	PPB	< 0.03	< 0.03	< 0.03			
Dieldrin ⁸	PPB	< 0.03	< 0.03	< 0.03			
2,4-D ⁸	PPB	< 0.6	< 0.6	< 0.6			

Table 3-1Recent Water Quality for the KAC Source Water to the Zai WTP

Property	Units	Average	Minimum	Maximum
2-4-5T ⁸	PPB	< 0.3	< 0.3	< 0.3
DDT ⁸	PPB	< 0.15	< 0.15	< 0.15
	Radionu	iclides		
Alpha ⁹	Bq / L	< 0.25	< 0.25	< 0.25
Beta ⁹	Bq / L	< 0.5	< 0.5	< 0.5
	Aesthetic Wate	er Properties		
Aluminum⁵	PPM	0.03	< 0.01	< 0.1
Ammonium ¹⁰	PPM	0.14	0.06	0.76
Bromide ¹¹	PPM	0.8	< 0.5	1.2
Chemical Detergents	PPM	< 0.05	< 0.05	< 0.05
(MBAS) ¹¹				
Chloride ⁶	PPM	174	104	234
Dissolved Oxygen ²	PPM	7.7	5.2	10.8
Electrical Conductivity ²	μS / cm	1090	689	1336
Iron ⁶	PPM	0.23	< 0.12	2.1
pH ²		8.2	7.1	8.9
Phosphate ⁷	PPM	0.14	0.04	0.38
Sodium⁵	PPM	103	85	115
Sulfate ⁶	PPM	103	79	139
Total Alkalinity ¹²	PPM as CaCO ₃	194	156	244
Total Dissolved Solids (TDS) ⁶	PPM	631	468	704
Total Hardness ¹³	PPM as CaCO ₃	274	252	307
Total Organic Carbon ³	PPM	3.0	2.0	4.6
Zinc ⁵ PPM		0.11	< 0.06	0.34

Notes:

1. Data Range: Grab samples taken weekly between January 2015 to December 2017

2. Data Range: Grab samples taken every two hours between January 2015 to December 2017

3. Data Range: Grab samples taken daily between January 2017 to December 2017

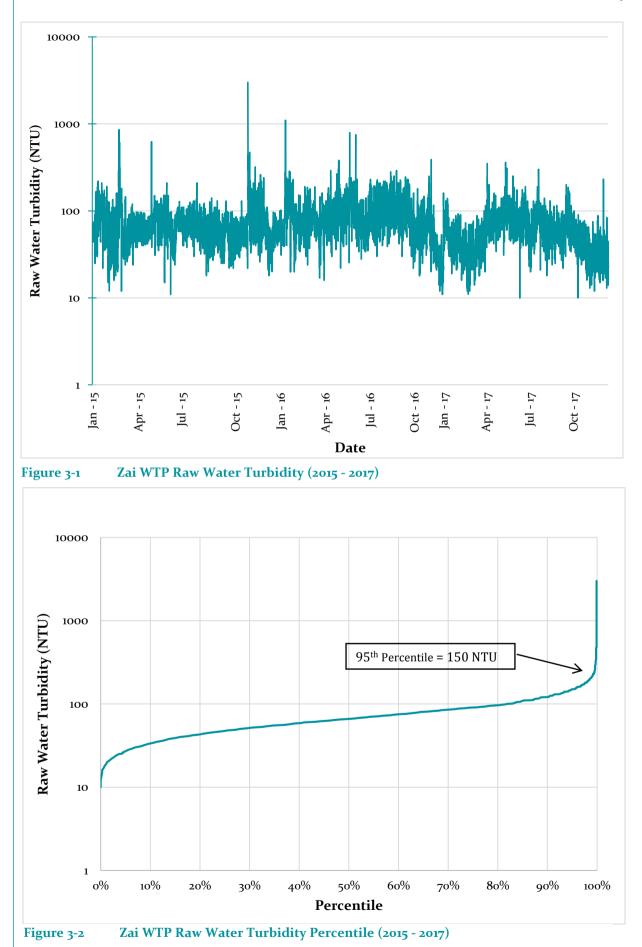
4. Data Range: Grab samples taken annually between January 2015 to December 2017

5. Data Range: Grab samples taken guarterly between January 2015 to December 2017

6. Data Range: Grab samples taken monthly between January 2015 to December 2017

7. Data Range: Grab samples taken daily between January 2015 to December 2017

8. Data Range: Grab samples taken every two years between January 2015 to December 2017


9. Data Range: Grab samples taken May 2015

10. Data Range: Grab samples taken every six hours between January 2015 to December 2017

11. Data Range: Grab samples taken every six months between January 2015 to December 2017

12. Data Range: Grab samples taken every four hours between January 2017 to December 2017

13. Data Range: Grab samples taken weekly between January 2017 to December 2017

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

3.2.2 Total Organic Carbon

Under most conditions, the KAC source water can be characterized as having moderate levels of organic carbon. Figures 3-3 and 3-4 illustrate the reported raw water TOC levels for 2017. The raw water TOC ranged from 2.0 to 4.6 ppm in 2017, with an average level of 3.0 ppm. High levels of TOC can reduce the effectiveness of the coagulation process and can lead to the formation of excessive amounts of disinfection byproducts when chlorine is added for disinfection.

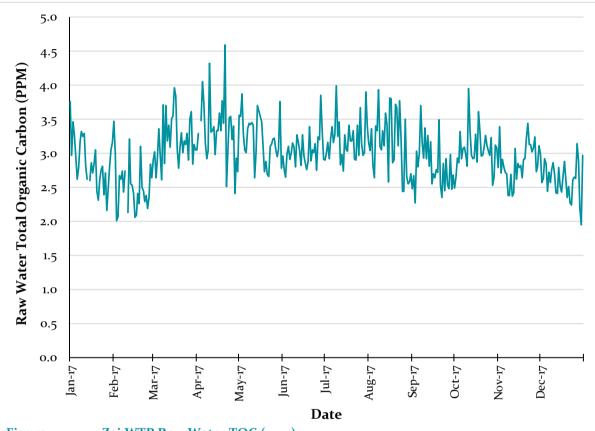


Figure 3-3

Zai WTP Raw Water TOC (2017)

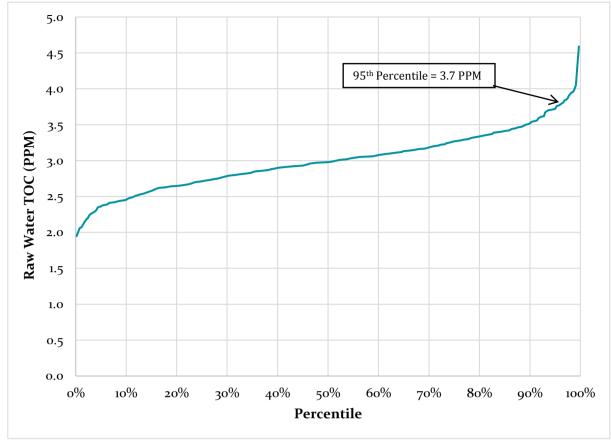
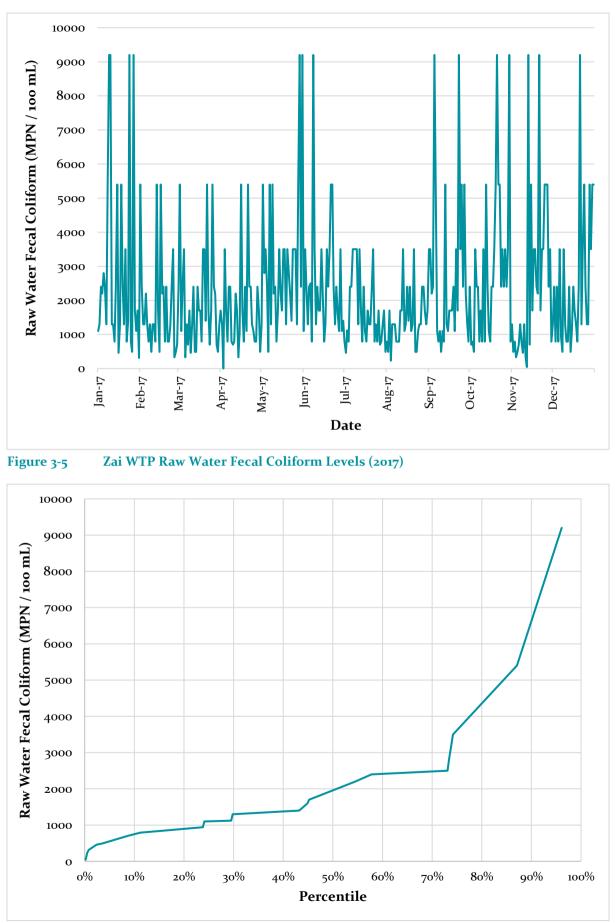



Figure 3-4Zai WTP Raw Water TOC Percentile (2017)

3.2.3 Coliforms and MoH Source Water Classification

The MoH has classified the KAC as Group 3 source water since more than 20 percent of the raw water samples show fecal coliform numbers greater than 2000 per 100 mL. Figures 3-5 and 3-6 illustrate the reported raw water fecal coliform values for 2017. The high levels of coliforms are likely due to stormwater runoff from livestock grazing or from leaking cesspools or similar in the communities adjacent to the KAC.

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

3.2.4 Applicable Water Treatment Processes

Under MoH requirements, potable water treatment systems that utilize a Group 3 source are required to provide the following minimum treatment requirements:

- 5-log (99.999%) removal of viruses
- 4-log (99.99%) removal of *Giardia* and *Cryptosporidium*
- Must use rapid filtration, MF, UF, NF, RO or slow sand filtration with coagulation, mixing and sedimentation
- Must use UV disinfection

The Zai water treatment plant utilizes coagulation, mixing, sedimentation, rapid media filtration, UV disinfection, and chlorine disinfection, and thus appears capable of meeting minimum treatment requirements dictated by the MoH. In addition, none of the KAC raw water quality data summarized in Table 3-1 indicates water quality parameters of concern at levels that would require different or additional water treatment processes to be used at the Zai WTP to comply with the JWQS standards.

3.2.5 Extreme Water Quality Events

Historically, the KAC has been susceptible to extreme water quality events, resulting from stormwater runoff and/or flushing of upstream water supply channels, that include very high raw water turbidity levels and TOC concentrations that make the raw water difficult to treat. In a 2005 report by CDM Smith exploring alternative treatment technologies for the KAC, a maximum turbidity of 32,775 NTU was reported as was a maximum TOC of 42 mg/L. Miyahuna has developed a series of standard operating procedures (SOP) to respond to extreme KAC water quality events, such as high levels of raw water turbidity, algae, phosphate, nematodes, or ammonia. Measures that may be taken to respond to extreme water quality events include: reducing WTP flow rates and/or stopping WTP operations, adjusting chemical feed within the intake pump station and the Zai WTP, and addition of ferric chloride with the KAC upstream of the Dier Alla intake.

During the years 2015 – 2017, operation of the Zai water system was impacted by several episodes of extreme raw water quality, as shown in Table 3-2.

Dates	KAC Water Quality	Zai Water System Response		
21-22 February 2015	Reported maximum raw water turbidity of 860 NTU.	Pumping rate to Zai WTP reduced.		
26-28 October 2015	Reported maximum raw water turbidity of 3000 NTU.	Pumping rate to Zai WTP reduced.		
10-12 January 2016	Reported maximum raw water turbidity of 1100 NTU.	Pumping rate to Zai WTP reduced.		
3 April 2017	Reported maximum raw water turbidity of 350 NTU.	Pumping rate to Zai WTP reduced.		

Table 3-2Impact of KAC Extreme Water Quality Events on the Zai Water System

3.2.6 Comparison to Historical KAC Water Quality

In preparation for the Wadi Arab II WTP, CDM prepared a Water Quality Assessment and Treatment Process Technical Memorandum (June 2014) that presented summaries of KAC raw

water quality from May 2011 through April 2014. Excerpts from this technical memorandum are included in Appendix A. Many of the water quality parameters of this historical data are similar to the current data (e.g., pH, total alkalinity, TDS, total hardness). The range of TOC levels reported for the KAC in 2017 are slightly lower than the levels reported in 2011 to 2014. However, the turbidity and fecal coliform levels in the recent data are higher than was reported in the Wadi Arab II WTP report. This suggests that the KAC may be more susceptible to stormwater runoff, possibly due to increased development activities within the watershed area.

SECTION 4 - TREATED WATER QUALITY

4.1 INTRODUCTION

The Zai WTP is a conventional treatment process that was originally commissioned in 1985 and has been expanded and upgraded several times since then. The following major water treatment processes are currently utilized at the Zai WTP:

- Raw water screening
- Pre-oxidation with chlorine dioxide and/or potassium permanganate
- Pre-sedimentation grit removal
- Powdered activated carbon adsorption
- Chlorite control using ferrous sulfate (reductant)
- Coagulation with ferric sulfate and cationic polymer
- Rapid mixing, flocculation, sedimentation
- Rapid dual-media filtration
- UV disinfection
- Chlorine disinfection

4.2 TREATED WATER QUALITY

The treated finished water from the Zai WTP is regularly sampled and analyzed for various water quality parameters. Results from this periodic sampling for the three-year period from 2015 to 2017 was provided by Miyahuna. Table 4-1 provides a summary of recent historical water quality of the Zai WTP effluent.

Property	Units	Average	Minimum	Maximum	JWQS Standard
		Physical Prope	erties		
Color ¹	TCU	< 15	< 15	< 15	15
Odor ¹	TON	NO	NO	NO	N/A
Turbidity ²	NTU	0.26	0.10	0.84	5
	I	Biological Prop	erties		
Total Coliform ³	CFU / 100mL	< 1	< 1	< 1	<1.1
Nematodes - Live ⁴	No. / L	0.1	None	6	1
			Detected		
Nematodes - Dead ⁴	No. / L	0.6	None	21	N/A
			Detected		
Cryptosporidium ⁶	No. / L	None	None	None	None
		Detected	Detected	Detected	Detected
Giardia ⁶	No. / L	None	None	None	None
		Detected	Detected	Detected	Detected

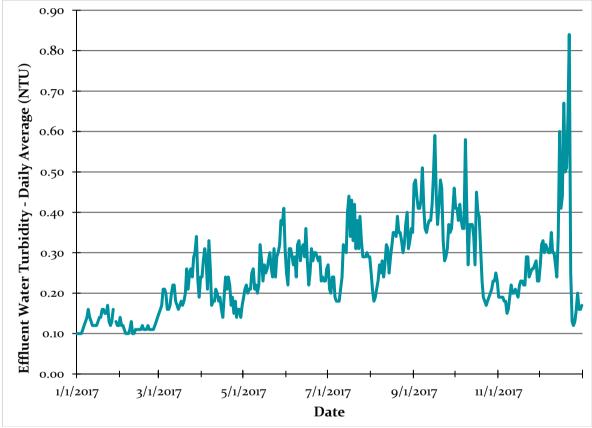
Table 4-1Recent Treated Water Quality of the Zai WTP Effluent

Property	Units	Average	Minimum	Maximum	JWQS
					Standard
	Ť		al Substances	1 1	
Antimony ⁵	PPB	< 3	< 3	< 3	5
Arsenic⁵	PPB	< 3	< 3	< 3	10
Barium⁵	PPM	0.18	0.15	0.21	1.0
Boron ⁵	PPM	0.19	0.15	0.22	1
Cadmium⁵	PPB	< 0.2	< 0.2	< 0.25	3
Chromium⁵	PPB	< 2	< 2	< 2	50
Cobalt ⁵	PPB	< 0.2	< 0.2	< 0.2	N/A
Copper ⁶	PPM	< 0.15	< 0.15	< 0.15	1.0
Cyanide ⁵	PPM	< 0.01	< 0.01	< 0.05	0.07
Fluoride ⁷	PPM	0.46	0.24	0.74	1.5
Lead⁵	PPB	< 2	< 2	< 2	10
Manganese ⁶	PPM	< 0.05	< 0.05	< 0.05	0.10
Mercury ⁵	PPB	0.19	<0.15	0.27	1
Molybdenum⁵	PPB	6.6	3.6	8.5	70
Nickel ⁵	PPB	4.0	< 2	8.0	70
Nitrate ²	PPM	5.8	1.8	12.8	50
Nitrite ⁷	PPM	< 0.1	< 0.1	0.11	2.0
Potassium⁵	PPM	6.7	3.8	8.4	N/A
Selenium ⁵	PPB	< 5	< 5	< 5	10
Silver ⁵	PPB	< 1	< 1	< 2	100
	Organi	c Pollutants	and Pesticides		
Benzene⁵	PPB	< 8	< 8	< 10	10
PCE⁵	PPB	< 18	< 11	< 22	40
TCE⁵	PPB	< 18	< 13	< 38	20
Ethylbenzene ⁵	PPB	< 18	< 8	< 19	300
Total Xylene⁵	PPB	< 22	< 8	< 38	700
Toluene⁵	PPB	<18	< 8	< 19	300
Endrin ⁸	PPB	< 0.1	< 0.1	< 0.1	2
Lindane ⁸	PPB	< 0.1	< 0.1	< 0.1	2
Heptachlor ⁸	PPB	< 0.03	< 0.03	< 0.03	0.03
Aldrin ⁸	PPB	< 0.03	< 0.03	< 0.03	0.03
Dieldrin ⁸	PPB	< 0.03	< 0.03	< 0.03	0.03
2,4-D ⁸	PPB	< 0.6	< 0.6	< 0.6	90
2-4-5T ⁸	PPB	< 0.3	< 0.3	< 0.3	9.0
DDT ⁸	PPB	< 0.15	< 0.15	< 0.15	2
			fection Byproducts	;	
Free Chlorine ²	PPM	1.47	1.34	1.58	1.5
THMs⁴	PPB	50	19	103	150
Chlorite ⁹	PPM	0.59	0.13	0.98	0.7
	1	Radionuc	lides	1	
Alpha ¹⁰	Bq / L	< 0.25	< 0.25	< 0.25	0.5
Beta ¹⁰	Bq / L	< 0.61	< 0.61	< 0.61	1.0
	Aes	sthetic Water	Properties		
Aluminum ⁶	PPM	< 0.01	< 0.01	< 0.01	0.1

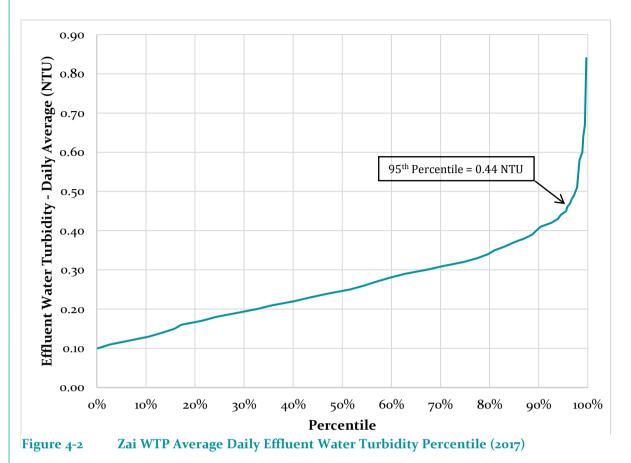
USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

Property	Units	Average	Minimum	Maximum	JWQS Standard
Ammonium ¹	PPM	< 0.1	< 0.1	< 0.1	0.2
Bromide ¹¹	PPM	0.53	< 0.25	0.92	N/A
Chemical	PPM	< 0.05	< 0.05	< 0.05	0.2
Detergents (MBAS) ¹¹					
Chloride ⁷	PPM	177	113	226	500
Dissolved Oxygen ¹²	PPM	6.9	5.0	10.1	N/A
Iron ⁷	PPM	< 0.15	< 0.15	< 0.15	1
pH ¹²		7.4	6.7	8.0	6.5 – 8.5
Phosphate ¹	PPM	< 0.1	< 0.1	< 0.1	N/A
Sodium ⁶	PPM	108	87	123	200
Sulfate ⁷	PPM	177	113	226	500
Total Alkalinity ¹²	PPM as CaCO₃	162	131	207	N/A
Total Dissolved Solids ⁷	PPM	632	511	729	1000
Total Hardness ²	PPM as CaCO₃	280	250	308	500
TOC ^₄	PPM	1.7	1.1	2.2	N/A
TOC Removal	Percent	44%	15%	62%	N/A
Zinc ⁶	PPM	< 0.06	< 0.06	< 0.06	4

Notes:


- 1. Data Range: Grab samples taken daily between January 2015 to December 2017
- 2. Data Range: Grab samples taken daily between January 2017 to December 2017
- Data Range: Grab samples taken every six hours between January 2015 to December 2017
- 4. Data Range: Grab samples taken twice daily between January 2017 to December 2017
- 5. Data Range: Grab samples taken annually between January 2015 to December 2017
- 6. Data Range: Grab samples taken guarterly between January 2015 to December 2017
- 7. Data Range: Grab samples taken monthly between January 2015 to December 2017
- Data Range: Grab samples taken every two years between January 2015 to December 2017
- Data Range: Grab samples taken every six hours between January 2017 to December 2017
- 10. Data Range: Grab samples taken May 2015
- 11. Data Range: Grab samples taken every six months between January 2015 to December 2017
- 12. Data Range: Grab samples taken every four hours between January 2017 to December 2017

4.3 WATER TREATMENT PLANT PERFORMANCE


The water quality data in Table 4-1 shows the Zai WTP complies with most of the regulated parameters. However, a few of the parameters appear to occasionally exceed the maximum allowable standard or other industry guidance. These are discussed further below.

4.3.1 Turbidity

While the effluent filter turbidity levels (daily averages) are less than the maximum allowable value of 5 NTU, they do not comply with World Health Organization (WHO) recommendations or current industry best practice guidelines. The Zai WTP effluent finished water turbidity levels (average daily) from 2017 are shown in Figure 4-1. The WHO recommends filter effluent turbidity levels to be less than 0.3 NTU 95 % of the time. The 95th percentile effluent turbidity level for the Zai WTP in 2017 was 0.44 NTU which is 46% above the WHO recommendations, as shown in Figure 4-2. It is recommended that a detailed filter evaluation be conducted to identify the cause of the less than optimal filter performance. It is also recommended that the Zai WTP resume the use of filter-aid-polymer to improve filter performance.

4.3.2 Nematodes

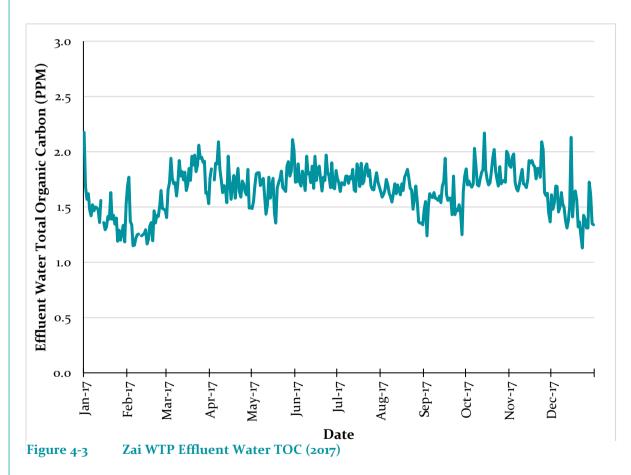
Levels of live nematodes that exceed the Jordanian standard (greater than 1 per L) were reported in the effluent water on several dates in 2017. Since many times the number of live nematodes reported within the effluent water exceed those reported in the raw water, it appears that there may be colonies of nematodes reproducing within the Zai WTP basins. More frequent basin cleaning is recommended. In addition, improvements to the filtration process, described above, may also be effective at improving the control of nematode levels in the effluent water.

4.3.3 Chlorine

Free chlorine is used as a primary disinfectant in the Zai WTP as well as a residual disinfectant within the finished water transmission and distribution piping. Finished water chlorine levels are fairly consistent, ranging from a minimum of 1.34 ppm to a maximum of 1.58 ppm. The maximum residual chlorine levels are a little greater than the maximum JWQS standard of 1.5 ppm, although this is below the WHO health-based maximum guideline of 5 ppm. Chlorine levels must be controlled by reducing the chlorine feed rate for the plant.

4.3.4 Chlorite

Chlorite is a byproduct of the application of chlorine dioxide as a pre-oxidant at the intake pump station in Deir Alla. Chlorite levels can be reduced by reducing the dose of chlorine dioxide or by increasing the dose of ferrous sulfate reductant. Table 4-2 illustrates that the


Zai WTP is capable of controlling the chlorine concentration in the effluent water and was effective at keeping the level below the regulatory limit of 0.7 ppm for most of the time.

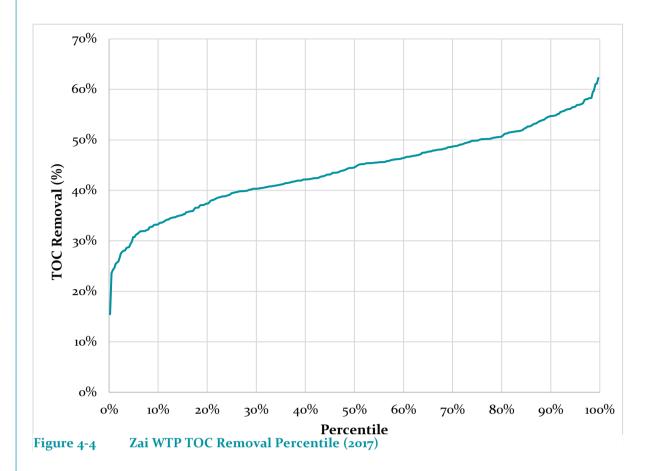

	Chlorite Concentration				
	Influent to Zai WTP (leaving	Effluent from Zai WTP			
	Raw Water Pipeline)				
Average	1.10 PPM	0.59 PPM			
Maximum	1.65 PPM	0.98 PPM			
95 th Percentile	1.32 PPM	0.69 PPM			
Minimum	0.34 PPM	0.13 PPM			

Table 4-2Chlorite Concentrations in the Zai Water System (2017)

4.3.5 Total Organic Carbon

The treatment processes used in the Zai WTP are effective at achieving a significant reduction of TOC from the source water. The TOC in the effluent water averaged 1.7 ppm in 2017, constituting an average TOC removal of 44 %. Figure 4-3 shows the effluent water TOC levels for 2017. Figure 4-4 shows the percent TOC removal percentile achieved by the Zai WTP in 2017.

4.3.6 Trihalomethanes

The TOC removal achieved in the Zai WTP provides an important mechanism to control the formation of disinfection byproducts, such as trihalomethanes (THMs). THMs are produced through the interaction of chlorine with TOC in water. THMs form within the water treatment process and also continue to form in the water conveyance and distribution system. Figure 4-5 shows the trihalomethane levels in the effluent water for 2017. There is a strong seasonal trend in the formation of the THMs which can be mostly attributed to water temperature which has a major impact on the rate of THM formation. The highest THM levels are seen in the summer when the water is the warmest.

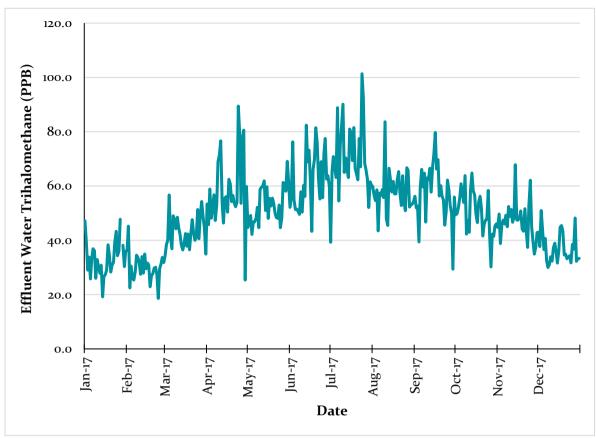


Figure 4-5 Zai WTP Effluent Water Trihalomethane Levels (2017)

4.3.7 Applicable Water Treatment Processes

The treated finished water quality of the Zai WTP complies with most JWQS standards and industry guidance. A detailed filter evaluation is recommended to identify upgrades to the filters and/or process control systems to lower the finished water turbidity and nematode levels. Upgrades to process controls should also be identified to improve compliance with chlorine and chlorite standards.

4.3.8 Comparison to Historical Zai WTP Water Quality

In preparation for the Wadi Arab II WTP, CDM Smith prepared a Water Quality Assessment and Treatment Process Technical Memorandum (June 2014) that presented summaries of Zai WTP effluent water quality from May 2011 through April 2014. Excerpts from this technical memorandum are included in Appendix A. Many of the water quality parameters of this historical data are similar to the current data, however, the effluent turbidity levels in the recent data are higher than this earlier data, indicating that the performance of the Zai filters has deteriorated in recent years.

APPENDIX A

WADI ARAB WATER SYSTEM II – WATER QUALITY ASSESSMENT MEMORANDUM (2014)

USAID Jordan Water Infrastructure Water Quality Assessment Report - ZAI

APPENDIX A - WADI ARAB WATER SYSTEM II – WATER QUALITY ASSESSMENT MEMORANDUM (2014)

The Wadi Arab Water System II – Water Quality Assessment and Treatment Process Selection Technical Memorandum (June 2014) presented summaries of KAC raw water quality and Zai WTP effluent water quality from May 2011 through April 2014. The following are excerpts of data from this technical memorandum.

A.1 DEIR ALLA RAW WATER QUALITY

Table A-1KAC Raw Water Statistics at Deir Alla from May 2011 through April 2014

Property	Units	Average	Minimum	Maximum			
Physical Characteristics							
Odor	TON	12	8	17			
Turbidity	NTU	42	10	1224			
Temperature	Deg. C	22	14	28			
	Biological Cha	aracteristics					
Fecal Coliform	MPN / 100mL	1865	23	24196			
Nematodes – Live	No. / L	N/A	None Detected	22			
Nematodes – Dead	No. / L	N/A	None Detected	9			
	Inorganic Chemic	cal Substances					
Nitrate	PPM	4.5	0.5	17.1			
Nitrite	PPM	0.08	0.03	0.12			
	Aesthetic Wate	er Properties					
Aluminum	PPM	0.067	0.020	0.289			
Bromide	PPM	0.71	0.25	1.14			
рН		8.19	7.71	8.5			
Total Alkalinity	PPM as CaCO ₃	191	139	275			
Total Dissolved Solids (TDS)	PPM	632	302	716			
Total Hardness	PPM as CaCO ₃	277	156	358			
Total Organic Carbon	PPM	3.18	1.48	6.24			

A.2 ZAI EFFLUENT WATER QUALITY

Table A-2

Zai WTP Finished Water Quality Statistics from May 2011 through April 2014

Property	Units	Average	Minimum	Maximum	JWQS Standard
	I	Physical Prope	erties		
Color	TCU	< 15	< 15	< 15	15
Odor	TON	0.01	No Odor	12	N/A
Temperature	Deg. C	25	13	33	25
Turbidity	NTU	0.16	0.06	0.44	5
Biological Properties					
Total Coliform	CFU / 100mL	< 1	< 1	< 1	<1.1
Nematodes - Live	No. / L	N/A	None	4	1
			Detected		

Property	Units	Average	Minimum	Maximum	JWQS Standard
Nematodes - Dead	No. / L	N/A	None	8	N/A
			Detected		
Cryptosporidium	No. / L	None	None	None	None
Oiandia	N. / I	Detected	Detected	Detected	Detected
Giardia	No. / L	None	None	None	None
	Inoraa	Detected	Detected	Detected	Detected
Nitrate	PPM	4.1	1	13	50
Nitrite	PPM	0.08	0.03	0.1	2.0
Nunte			nd Pesticides	0.1	2.0
Benzene	PPB	< 8	< 8	< 8	10
PCE	PPB	< 22	< 22	< 22	40
TCE	PPB	< 18	< 18	< 18	20
Ethylbenzene	PPB	< 18	< 18	< 18	300
Total Xylene	PPB	< 38	< 38	< 38	700
Toluene	PPB	< 19	< 19	< 19	300
Endrin	PPB	< 0.1	< 0.1	< 0.1	2
Lindane	PPB	< 0.1	< 0.1	< 0.1	2
Heptachlor	PPB	< 0.03	< 0.03	< 0.03	0.03
Aldrin	PPB	< 0.03	< 0.03	< 0.03	0.03
Dieldrin	PPB	< 0.03	< 0.03	< 0.03	0.03
DDT	PPB	< 0.15	< 0.15	< 0.15	2
			ection Byproducts	1	
Free Chlorine	PPM	1.5	1	1.8	1.5
THMs	PPB	31	8	92	150
Chlorite	PPM	0.61	0.36	1.07	0.7
		Radionucl			
Alpha	Bq / L	< 0.25	< 0.25	< 0.25	0.5
Beta	Bq / L	< 0.59	< 0.59	< 0.59	1.0
	Aes	thetic Water	Properties		
Aluminum	PPM	0.0036	< 0.00001	0.0177	0.1
Ammonium	PPM	0.05	0.04	0.06	0.2
Chemical	PPM	< 0.05	< 0.05	< 0.05	0.2
Detergents (MBAS)					
Chloride	PPM	170	58	227	500
Iron	PPM	< 0.12	< 0.12	< 0.12	1
рН		7.3	7.0	7.7	6.5 – 8.5
Sulfate	PPM	96	52	145	500
Total Dissolved Solids	PPM	613	350	726	1000
Total Hardness	PPM as CaCO₃	277	166	342	500
ТОС	PPM	1.88	0.27	3.51	N/A

A-3